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The present paper considers biaxial nematogenic lattice models, involving particles of D2h symmetry, whose
centers of mass are associated with a three-dimensional simple-cubic lattice. The pair potential is isotropic in
orientation space and restricted to nearest neighbors. Let two orthonormal triads define orientations of a pair of
interacting particles. The investigated potential models are quadratic with respect to the nine scalar products
between the two sets of unit vectors. Actually, based on available geometric identities, these expressions can be
reduced to diagonal form containing only the scalar products between corresponding unit vectors and depend-
ing on three parameters. Over the years, this comparatively simple functional form has also proven to be rather
versatile. By now, various sets of potential parameters capable of producing mesogenic behavior of some kind
have been proposed and studied in the literature. A new and simplified form was recently proposed and
investigated by Sonnet, Virga, Durand, and De Matteis �A. M. Sonnet, E. G. Virga, and G. E. Durand, Phys.
Rev. E 67, 061701 �2003�; G. De Matteis and E. G. Virga, Phys. Rev. E 71, 061703 �2005�� and is known to
support a biaxial phase at sufficiently low temperature. Following the idea of the above authors, we have
studied a more extended range of parameters, including cases where biaxiality cannot be sustained in the pair
ground state. In cases where a biaxial phase survives, an appropriate mean-field analysis may predict the
existence of a direct second-order transition to the isotropic phase as well as a second-order sequence isotropic-
to-uniaxial-to-biaxial. A second-order phase transition is also predicted, which involves isotropic and uniaxial
phases only. Monte Carlo simulations have been carried out as well, for a few points in the parameter space,
and found to produce results which partly confirm mean-field predictions.
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I. INTRODUCTION

Nematogenic molecules do not possess cylindrical sym-
metry and sometimes have appreciable dipole moments, yet
the resulting thermotropic mesophases of low-molecular
weight compounds are usually uniaxial and apolar. In a num-
ber of cases, theoretical treatments have been �and still are�
fruitfully simplified by assuming from the start that nemato-
genic molecules are D�h−symmetric. On the other hand, over
the last thirty years, the possible effects of molecular biaxi-
ality �i.e., of deviations from cylindrical symmetry� on nem-
atic order have been studied theoretically as well. By the end
of the past century, molecular field �MF� �1–10� or Landau
treatments �11–13�, and later simulation studies of lattice
models �14–18�, have shown that single-component models
consisting of molecules possessing D2h symmetry, and inter-
acting by appropriately chosen continuous potentials, can
produce a biaxial phase. A similar scenario had emerged
from the analytical study of single-component systems con-
sisting of biaxial molecules interacting via hardcore poten-
tials �19–27� also supported by simulation results �28–30�. In
both cases, the transition between biaxial and uniaxial nem-
atic phases is mostly found to be second order �but see below

for a partly different scenario� and a direct transition between
isotropic and biaxial nematic phases is predicted as well.
Gay-Berne potential models �see Ref. �31� for a review�,
originally developed for uniaxial molecules, have been ex-
tensively investigated. More recently, biaxial extensions of
them have been proposed and studied by simulation �32–38�.
An extensive symmetry analysis of unconventional nematic
phases was recently developed in Refs. �39–41�.

Most of the above cases involve single-site models pos-
sessing D2h symmetry. In a few other cases �27,30�, the po-
tential model involves two identical interacting moieties in
each particle, associated with different interaction centers.
Each moiety is uniaxial, and they are connected in a
V-shaped fashion. Some other segmental or V-shaped mod-
els, also recently discussed in the literature, actually reduce
to the single-site type �42–45�. Rigid-molecule models have
been considered in the above references, and in some other
cases �46–48� more general MF or simulation treatments
were developed, allowing for internal �torsional� degrees of
freedom.

On the experimental side, a biaxial phase had been dis-
covered in a lyotropic system in 1980 �49�. Since 1986 there
had been numerous reports of thermotropic biaxiality in low-
molecular weight compounds �see, e.g., Refs. �50–53��,
many of which were later called into question �54–57�. More
recently �58–62�, new experimental evidence of thermotro-
pic biaxial nematic behavior has been reported in systems
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involving polar “banana-shaped” molecules �but see also
Refs. �63,64��. Evidence of this behavior has also recently
been found in organosiloxane tetrapodes �65–67�, as well as
in polymeric systems �68,69�. The experimental search for
the biaxial nematic phase is currently very active. In the last
few months new findings have been published. Evidence of
biaxiality has been found in the nematic phase of the
boomerang-shaped mesogen ODBP-Ph-C7 �see Ref. �70��.
Moreover, the Authors of Ref. �71� reported evidence of di-
rect first-order isotropic-to-biaxial transition in ortho-
metallated �platinum� imine complexes. Their approach was
to design metallomesogens likely to introduce lateral corre-
lations of suitable �not too great� strength, i.e., promoting
order in directions orthogonal to the main director and hence
potentially stabilizing a biaxial nematic phase, but without
favouring the formation of layered �smectic� ones.

Also starting a few years ago, i.e., simultaneously with
and independently of the named experimental work, a re-
newed theoretical study of simple continuous biaxial me-
sogenic models was undertaken in Refs. �72–76�. The new
proposed models were studied by MF, Monte Carlo simula-
tion �MC� �77–79�, and, in some cases, by two-site cluster
theory �80�. Moreover, very recently and motivated by the
above experimental facts, the single-tensor Landau–de
Gennes theory of biaxial nematics has been carefully reex-
amined in Ref. �81� and a double-tensor Landau theory has
been put forward and studied in Refs. �40,82�.

Continuing along this line, we consider a nematogenic
lattice model here, where the pair potential is restricted to
nearest neighbors, and has the simplified functional form re-
cently proposed by Durand, De Matteis, Sonnet, and Virga
�DDSV� �72,73�, or some extreme case thereof �see below
also�. The resulting behavior is investigated by MF, and com-
parisons are made with MC simulations, for a few points in
the parameter space. More precisely, our main purpose is to
single out specific cases of the general pair potential defined
below, expected to produce weaker and weaker correlations
between the molecular axes as the model parameters in-
volved are varied. This approach is meant to explore to what
extent the macroscopic biaxiality still survives and to deter-
mine the type of transition and the phase which forms when
the biaxiality is completely suppressed.

As for the methodology employed, we recall that over the
decades, mesophases possessing no positional order, such as
the nematic one, have often and quite fruitfully been studied
by means of lattice models involving continuous interaction
potentials �see Refs. �18,44��, starting with the seminal
Lebwohl-Lasher simulation paper in the early 1970’s �see
Ref. �83��. As noted, for example, in Ref. �44�, usage of a
lattice model produces significant savings in computational
terms. Moreover, it entails that a number of competing
phases �e.g., smectic ones�, possibly preempting the nematic,
are excluded from the start; notice that similar simplifica-
tions as for the possible phases are used in other named
theoretical treatments as well.

Let us finally recall a few other rather recent related the-
oretical results: a simple MF model for biaxial smectic-A
mesophases has been studied �84�. Atomistic simulations
have been carried out �85� for a “banana-shaped” mesogen
recently reported to produce thermotropic biaxial nematic

phase �58–60�. Moreover, a biaxial mesogenic model some-
how allowing for dipolar interactions has been investigated
by simulation �45�.

II. GEOMETRIC IDENTITIES AND POTENTIAL MODELS

Here we consider classical identical particles possessing
D2h symmetry, whose centers of mass are associated with a
three-dimensional �simple-cubic� lattice Z3. Let x��Z3 de-
note the coordinate vectors of their centers of mass.

The interaction potential will be isotropic in orientation
space, and restricted to nearest neighbors, involving particles
or sites labeled by � and �, respectively. The orientation of
each particle can be specified via an orthonormal triplet of
three-component vectors �e.g., eigenvectors of its inertia ten-
sor�, say �n�,j , j=1,2 ,3�. In turn these are defined by an
ordered triplet of Euler angles ��= ��� ,�� ,���. For the mo-
ment, let orientations be defined with respect to a common,
but otherwise arbitrary, Cartesian frame e j �see Fig. 1�. It
also proves convenient to use a simpler notation for the unit
vectors defining orientations of two interacting molecules
�17�, i.e., u j for n�,j and vk for n�,k, respectively. Here, for
each j, u j and v j have the same functional dependences on
�� and ��, respectively �pairs of corresponding unit vectors

in the two interacting molecules�. Let 	̃=	�� denote the set

FIG. 1. Euler angles �86–88� used in the present paper. Unit
vectors e j denote the common laboratory frame and unit vectors u j

label the molecular frame, f j and g j correspond to the intermediate
ones, introduced for the purpose of defining the angles ��, ��, ��,
i.e., respectively, the azimuth, the polar angle, and the angle of
proper rotation. Among these axes, f2 denotes the line of nodes.
Laboratory axes, molecular axes, as well as the line of nodes, are
marked by arrowheads.
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of Euler angles defining the rotation transforming u j into v j.
Euler angles will be defined here according to the convention
used by Brink and Satchler �86–88� �see Fig. 1�. It will prove
convenient for future reference to recall that, upon express-
ing the three unit vectors n�,j in terms of Euler angles, one of
them �the figure axis n�,3� turns out to explicitly depend on
two angles ��, �� only, and a change of the third angle ��

defines a rotation of the two other unit vectors around the
figure axis. We also define

f jk = �v j · uk�, Gjk = P2�f jk� , �1�

where P2�¯� denotes the second Legendre polynomial. Let
us also mention for future reference that G11=1 entails G22
=G33, and similarly G22=1⇒ �G11=G33�, G33=1⇒ �G11
=G22�. The nine quantities Gjk are not linearly independent,
owing to the six constraints

�
j=1

3

Gjp = 0, �
k=1

3

Gqk = 0, p,q = 1,2,3. �2�

The simplest continuous interaction potentials proposed and
studied in this context �see, e.g., Refs. �4,5,72,73�� are qua-
dratic with respect to the scalar products f jk. Owing to Eqs.
�2� and without any loss of generality �see, e.g., the discus-
sion in Ref. �77��, they can be reduced to a �rather versatile�
linear combination of the diagonal terms Gkk, i.e.,


 = �
k=1

3

rkGkk �3�

or


 = aG33 + b�G11 − G22� + c�2�G11 + G22� − G33� . �4�

Linear transformations between the two sets of coupling con-
stants can be found in Ref. �77�.

Particle interactions, correlations, and orientational order
are usually expressed in terms of symmetry-adapted combi-
nations of Wigner rotation functions Dm,n

J ���, i.e., for D2h
symmetry �see, e.g., Refs. �16,17,21��

Rpq
J ��� = �1/4� �

s=�1
�

t=�1
Dsp,tq

J ��� . �5�

Here J, p, q denote even and non-negative integers, 0�p
�J, 0�q�J, and �= �� ,� ,�� denotes the ordered triplet of
Euler angles. Thus

R00
2 ��� = P2�cos �� ,

R02
2 ��� = �1/4��6 sin2� cos�2�� ,

R20
2 ��� = �1/4��6 sin2� cos�2�� ,

R22
2 ��� = �1/4��1 + cos2���cos�2��cos�2���

− �1/2�cos ��sin�2��sin�2��� . �6�

Each term Gjk can be expressed as a linear combination of

the four above functions Rpq
2 �	̃� �see, e.g., Refs. �21,77��.

Moreover, it proves notationally convenient, especially in

view of a MF treatment, to define the simpler symbols sk���
as well, involving just one subscript, thus

s1��� = R00
2 ���, s2��� = R20

2 ��� ,

s3��� = R02
2 ���, s4��� = R22

2 ��� . �7�

On the other hand, let P denote a permutation of the set
�1,2 ,3�, and let us consider the expressions


 = ag3 + b�g1 − g2� + c�+ 2�g1 + g2� − g3�, gk = Gkk,

�8�

�P� = âh3 + b̂�h1 − h2� + ĉ�+ 2�h1 + h2� − h3�, hk = gP�k�.

�9�

For a given P, one can investigate the conditions under
which �P�=
. The resulting linear and homogeneous re-

lations connecting the two sets of coupling constants �â , b̂ , ĉ�
and �a ,b ,c� can be found in Ref. �77�.

The above result �77� can be useful in connecting and
comparing different potentials, or different notations used in
the literature. The named permutations can also be used to
relate potential models by duality �see, e.g., Refs.
�17,72,73��. More precisely, if the above conditions are sat-
isfied for a certain permutation P, 	a	 and 	â	 can be taken to
set temperature scales, so that the two potential models �Eqs.
�8� and �9�� produce the same macroscopic properties within
a temperature rescaling, which can be read off the above
equations. In the notation of Eq. �3�, the above duality prop-
erty can be given the simpler form

�
k=1

3

rP�k�hk = �
k=1

3

rkgk �10�

or, in other words, any relabeling of axes, coupled with the
corresponding permutation of the coefficients, leaves the mu-
tual potential energy unchanged. Notice also that the above
identities are purely geometric in character, independent of
the specific values of the parameters. They entail a signifi-
cant reduction of the parameter space for Eq. �4� �79,89,90�.
On the other hand, additional physical constraints on the pa-
rameters result, e.g., by requesting the potential to produce a
biaxial ground state or/and requesting mechanical stability of
it �72,73�.

If at least one of the three coupling constants rk in Eq. �3�
is negative and largest in magnitude, the pair ground state
can be expected to be somehow orientationally ordered �at
least uniaxially ordered. The result can also be proven under
more restrictive conditions�. Then this “ordering” coupling
constant can always be associated with the G33 term by a
suitable relabeling of axes.

On the other hand, after stipulating that two of the three
coefficients rk in Eq. �3� be equal, a number of possible cases
may be further distinguished �some of which are left for
future investigation�, e.g., �i� only one coefficient is simulta-
neously negative and largest in magnitude �the calamitic or
perturbed LL scenario �72,73,77��, �ii� two of the three coef-
ficients are negative, equal to each other, and have the largest
magnitude �as in Ref. �79� and in the following � models�,
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�iii� the three coefficients are negative and equal to each
other �79�, �iv� the three coefficients have different signs and
the same magnitude, �v� the coefficient�s� with the largest
magnitude is �are� positive.

Let us reconsider the notation in Eq. �4�, where the cou-
pling constants �a ,b ,c� have dimension of energy. It proves
convenient to scale all of them by an arbitrary positive quan-
tity � with dimension of an energy and to rewrite the equa-
tion


 = ��a�G33 + b��G11 − G22� + c��+ 2�G11 + G22� − G33�� ,

�11�

where a�, b�, c� are now dimensionless and � is used to set
energy and temperature scales �i.e., T*=kBT /��. Notice that
two sets of coupling constants �a� ,b� ,c�� and �a� ,b� ,c��,
proportional by a positive quantity, can be identified, so that
one can �but need not� define �=max�	a 	 , 	b 	 , 	c 	 �, thus mak-
ing the three scaled coupling constants not greater than 1 in
magnitude. Thus, the rather general potential model to be
investigated here reads


 = ���G33 + ��G11 − G22� + ��2�G11 + G22� − G33��
�12�

or, in terms of the above symmetry-adapted basis functions
�Eqs. �6� and �7��,


 = �
�s1�	̃� −
�6

2
��s2�	̃� + s3�	̃�� + 6�s4�	̃�� ,

�13�

where appropriate constraints on the parameters �� ,� ,�� pro-
ducing some kind or other of nematic �especially biaxial�
order are to be discussed in the following section.

At this stage it may be appropriate to comment on the
different but logically equivalent notations used in the
present context. On the one hand, a MF treatment ultimately
reduces to a single-particle problem, where order parameters
are almost directly worked out. In other words, MF essen-
tially uses the orthogonal basis �sk����k=1,. . .,4 in Eq. �7�. On
the other hand, in simulation, the orientation of each particle
is defined by three Euler angles in terms of which one con-
structs the three orthonormal unit vectors and hence the ap-
propriate scalar products involving interacting pairs. Thus,
the simulation essentially uses the notation in Eq. �3� for
calculating potential energies and appropriate procedures for
calculating order parameters as recalled in the simulation
section.

When ��0 and both 	�	 and 	�	 are significantly smaller
than 	�	, the potential can be regarded as a perturbed
Lebwohl-Lasher �LL� model, to which it reduces when �
=�=0. Notice also that this choice �usually completed by
setting �=−1� has been used in a number of cases. Older
simulation results �to be revisited here� suggest that the con-
dition �=−1, ��0, �=0 entails absence of biaxial order
�14�.

Over the years, various specific parametrizations have
been proposed and studied for Eq. �12�, based on differ-
ent grounds and motivations. One of them, due to Straley

�4� is based on an approximate mapping from a hard-
parallelepiped model. Another more often studied one is
�=−1, 4�=−�2. This can also be obtained by starting from a
dispersion model in the London–de Boer–Heller approxima-
tion �91,92� and isotropically averaging over the orientation
of the intermolecular vector �see, e.g. Refs. �5,8��. Models
with fully anisotropic dispersion interactions, restricted to
nearest neighbors, and associated with both two- and three-
dimensional lattices, have been studied as well �42,93�. Both
the Straley model �4� and the “dispersive” one mostly predict
a biaxial-to-uniaxial transition of second order, followed by a
uniaxial-to-isotropic transition of first order. A direct biaxial-
to-isotropic transition of second order only exists for special
values of the potential parameters �isolated Landau points�.

An approach partly moving beyond the calamitic scenario
�see previous remarks �i�–�v�� was proposed recently by
DDSV. In their study, the authors �72,73� examined, for gen-
eral values of the parameters, the mathematical conditions
under which the pair potential �12� produces a biaxial ground
state, as well as its mechanical stability. They also proposed
the simplified model defined by �=−1, �=0, ��0, and stud-
ied it by MF, carrying out a bifurcation analysis of the re-
sulting consistency equations. The existence of direct transi-
tions between biaxial and isotropic phases, was proven,
together with criteria for the existence of tricritical points.
More precisely, in the resulting MF phase diagram
�72,73,79�, the biaxial-to-uniaxial transition is found to be
of second order for 0���−0.20, then of first order for
−0.20���−0.22, and finally a direct first-order transition
between biaxial and isotropic phases occurs for ��−0.22.
Down to �=−�17 /21��−0.8095 this transition is first order,
and reverts to second order below this value. Simulation re-
sults were found to qualitatively confirm the picture �77,79�.
An extensive study of the more general potential model �i.e.,
��0 in Eq. �12�� by bifurcation theory �as proposed in Refs.
�94,21��, can be found in Ref.�89�.

We are addressing here some related potential models ��
models for short� where two of the three coefficients rj in Eq.
�3� have a common value −2�, and the third one is ��1+��.
We shall mostly be considering the representation r2=r3, i.e.,


 = ���G11 + �− 2G33 − 2G22 + G11�� �14�

but let us point out that the equivalent choice r1=r2, i.e.,


 = ���G33 + �− 2G11 − 2G22 + G33�� , �15�

turns out to be more convenient in computer simulation
terms. Here � is a real positive number not greater than 1.
Notice that we do not have a perturbed LL model here.
Moreover, the stability analysis developed in the following
section shows that a biaxial ground state survives for ��1,
and disappears when �=1. Starting from Eq. �14� and recast-
ing it in the form of Eq. �12�, the three coefficients � ,� ,� can
be written in terms of � as
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� = ���� =
� − 9

4
, � = ���� =

� + 3

2
, � = ���� =

� − 1

4
.

�16�

Alternatively, upon collecting the factor 9−�
4

=max�	���� 	 , 	���� 	 , 	���� 	 �, one arrives at


 = �9 − �

4
�
− G33 + 2� + 3

9 − �
��G11 − G22� + � − 1

9 − �
�

��2�G11 + G22� − G33�� . �17�

The case ��0 was investigated by DDSV �72–74�. On the
other hand, the case �=0 was studied in Ref. �78�, and found
to produce a direct biaxial-to-isotropic transition of second
order. In the limiting case �= +1 �PMM model for short� the
potential model becomes


 = 2��− G33 − G22 + G11� . �18�

As for the model symbol, here potential parameters in the
notation of Eq. �3� possess a common absolute value, and the
capital letters correspond to their signs.

A second class of potential models to be also investigated
here is defined by �=−1, �=0 and variable � �� models for
brevity�, i.e.,


 = ��− G33 + ��G11 − G22��, 0 � �� 1. �19�

As the stability analysis will show, their ground state is
uniaxial and not biaxial �see also the earlier remarks in Ref.
�14��, also making contact with the predominant experimen-
tal situation. Moreover, in the limiting case �=1 it becomes
equivalent to the previous PMM case within numerical fac-
tors. In this case, the uniaxial ground state acquires an addi-
tional symmetry. As we shall see in the following sections,
looking at the same potential model as a common limiting
case of two different classes of interactions can offer some
additional insight.

III. STABILITY AND INVARIANCE

It is convenient to start this section by pointing out an
additional symmetry property which the general pair poten-
tial �Eq. �12�� may possess. When �=0, two simultaneous
rotations by �� /2 around the two unit vectors u3 and v3,
respectively �i.e., taking place in the individual molecular
frames�, conserve the potential. In the group theoretic lan-
guage this is a D4h invariance of the interaction. In the pa-
rametrization of Eq. �3�, this additional symmetry occurs
whenever any two of the three coefficients rj equal each
other, and involves rotations around the third axes. More-
over, if one considers a sample of interacting particles on the
lattice �as in the following simulations�, a rotation of each of
them by �� /2 around its third axis conserves each pair in-
teraction and hence the overall potential energy. Thus, the
named invariance property also applies to two other sets of
models 3�−�−�=0 and 3�+�−�=0, now with respect to
rotations by �

�
2 around the two unit vectors �u1 ,v1� and

�u2 ,v2�, respectively. It should be noticed that the three

above classes of models correspond to self-dual cases with
respect to the above permutations P �Sec. II and Ref. �77��.
Moreover, as discussed in Ref. �76�, this additional symme-
try may entail a reduction in the number of nonzero order
parameters.

The continuous pair potential 
 in Eq. �12� or �13� admits
several stationary points, where the gradient of the function
vanishes. These points always include the configuration of
complete alignment of corresponding unit vectors

u j = � v j, j = 1,2,3. �20�

The minimum character of the above configuration and its
mechanical stability are guaranteed provided that the cou-
pling coefficients �� ,� ,�� obey the following constraints
�72,76�:

� � 0 and 	�	 � − �� + �� . �21�

Moreover, within the region defined by these constraints, the
biaxial configuration �20� corresponds to the global mini-
mizer of 
. The stability region can be significantly reduced
by means of the above permutations P to a triangular domain
on the plane �=−1, bounded by the lines

� � 0, 3� − � + 1 � 0, � � 0 �22�

which is the essential triangle in the terminology of Ref.
�74�. This essential stability region is clearly an open set
whose boundary is given by

B1 = �� = 0, 0 � �� 1� , �23�

where the local stability of the biaxial ground state breaks
down. The other two sides of the triangle, that is,

B2 = 
� = 0, −
1

3
� �� 0� and B3 = �3� − � + 1 = 0,

0 � �� 1� , �24�

represent all D4h-symmetric models producing stable biaxial
ground state.

Since �=0 along B2, then the corresponding interaction 

turns out to be the superposition of just two, out of four,
D2h-symmetry-adapted functions, i.e., s1 and s4 �see Eq.
�13��. Actually, as also shown in Refs. �74,76�, for ��0, 

can be still decomposed uniquely into two orthogonal modes
as follows:


 = − ��a+�v1
+ + �6�+v2

+� + a−�v1
− + �6�−v2

−�� , �25�

where v1
�=s1+�6��s3, v2

�=s2+�6��s4 are orthogonal
D2h-symmetry-adapted basis functions. Each mode corre-
sponds to a �isotropically averaged� dispersion model at the
London approximation, i.e., �=−1 and 4�=−�2. Within the
essential triangle �22� and on the boundary �23�, provided
that ��0, the amplitudes �a+ ,a−� turn out to be both strictly
positive in the subregion �2�−4� and, accordingly, the
interaction is called “fully attractive”. In the subregion
�2�−4� one amplitude, that is a+, is positive and the other,
that is a−, is negative and the corresponding pair-interaction
models are called “partly repulsive”.

Both classes of potential models �14� and �19� investi-
gated here fall in the subregion of partly repulsive interac-
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tions except for the extreme values �=0 and �=0, where
one of the amplitudes vanishes and the interactions turn out
to be attractive. The former case is the well-known LL model
involving particles with D�h-symmetry. The latter �Ref. �78��
is conjugated with the extremely biaxial case of the �isotro-
pically averaged� dispersion model at the London approxi-
mation ��=−1, 4�=−�2�, defined in turn by �=− 1

9 . This
model also falls within the D4h-symmetric potential class
3�−�+1=0 and yields the isolated Landau point in the
phase diagram of the named dispersion model.

Let us first consider the � models and make contact with
the definitions for � ,� ,� we gave after Eq. �14�. Since
3����−����−����=0, i.e., r2=r3, then not only for �=0 but
for all values of �, the pair interaction turns out to be D4h
invariant. Moreover, when ��1, the above treatment proves
that the potential model supports a stable biaxial ground
state. Accordingly, within the essential triangle in Eq. �22�,
these models are entirely represented by the two sides in Eqs.
�24�, as also follows from the permutations P �Sec. II and
Ref. �77��. The models defined by ��0 correspond to fully
attractive interactions and they have been already investi-
gated elsewhere �72,73,77–79�. The cases 0���1are rep-
resented by the portion − 1

9 ���0 on B3.
The partly repulsive character results apparent from Eq.

�14�: since the coefficient � is positive, the corresponding
molecular axes repel each other with an overall magnitude
�+1, while the other two terms are attractive with the same
magnitude because of the D4h invariance. Furthermore, from
Eq. �16� one can recognize that the � models are a superpo-
sition of an � model and an attractive term with magnitude
�−1
9−� such that the resulting potential enjoys D4h invariance.

An additional, simple but telling, piece of information can
be obtained: the ground-state, fully aligned configuration
corresponds to a pair interaction energy ��−3+��, whereas
the two “staggered” pair configurations defined by �G33
=1 ,G22=G11=−�1 /2�� or, symmetrically, �G22=1 ,G11=G33
=−�1 /2�� correspond to an interaction energy −��3+�� /2,
and the resulting energy separation is �3 /2���1−��. These
values suggest that, for ��1 but close to it, and at some low
but finite temperatures, the “staggered” configurations may
become “competitive” �both in energy and entropy terms�
with the fully aligned one, and somehow disturb biaxial or-
der.

As for a pictorial interpretation of � models and their
possible realization in practice, let us first notice that the
corresponding potential can be decomposed as


 = �
a + 
0,


a = �G11,


0 = ��− 2G33 − 2G22 + G11�

= ��− �G33 + G22� + �G32 + G23�� , �26�

where the last expression has been obtained by using the
geometric identities �2�. The same identities also allow one
to write the total potential in another form


 = ���� − 1��G33 + G22� + �� + 1��G32 + G23�� . �27�

The term 
0 ��=0� can be regarded as a potential mimick-
ing the interaction between “shape amphiphilic” mesogens
containing rodlike and disclike parts covalently bonded to-
gether which have been also synthesized in the last years �see
Ref. �77� and others quoted therein�. The potential 
0 favors
parallel orientation of rod moieties, parallel orientation of
disc moieties, and mutual perpendicular orientations between
rods and discs. Actually, u3 and v3 can be interpreted as
defining �say� rod moieties, u2 and v2 can be interpreted as
disc moieties, and the various terms in the pair potential 
0
tend to produce the above mentioned biaxial ordering effects.
In addition, the geometric orthogonality constraint can also
produce a recognizable amount of parallel order of the third
unit vectors u1, v1, in spite of sign of the coefficient in front
of it. When ��0 the contribution antinematic with respect
to u1 ,v1, i.e., 
a, can disturb the biaxial ordering as it indi-
rectly introduces a repulsion between the planes spanned by
�u2 ,u3� and �v2 ,v3�, respectively. This means that the ten-
dency to biaxial order is weakened as � is increased �see Eq.
�27��. Hence, it should be expected that in order to stabilize
a homogeneous biaxial phase in the lattice, the rod-disc in-
teraction must be suitably strong �not too large values of ��.
Otherwise, the two above mentioned symmetric “staggered”
configurations could prevail on biaxial ordering at finite tem-
perature, again corresponding to the predominantly uniaxial
behavior observed experimentally even for the named class
of mesogens.

An alternative picture of � models can be given by recall-
ing that they admit the following equivalent form:


 = �
�P2�u1 · v1� −
9

4 �
s=�1

�
t=�1

P2�as · bt�� , �28�

where

as = cos���u1 + s sin���u2, s = � 1,

bt = cos���v1 + t sin���v2, t = � 1,

2� = arccos1

3
� �29�

represent the arms of two planar V-shaped �or, more pre-
cisely, and taking symmetry into account, X-shaped� inter-
acting molecules with opening angle 2�, where the unit vec-
tors u3 and v3 define the directions orthogonal to the
molecular planes. When �=0, the pair potential promotes
biaxial ordering with a+ parallel to b+ and a− parallel to b−,
whereas if 0���1 the biaxial alignment is disturbed by the
antinematic term which can trigger, for suitably large �, a
competition of the biaxial phase with the two symmetric
“staggered” configurations named above. Accordingly, an in-
termediate uniaxial phase could establish, characterized by
uniaxial alignment of �i� u3 or �ii� u2 along a common direc-
tor. In particular, the occurrence �i� could be accompanied by
a totally random distribution of the molecular arms in the
plane orthogonal to the main director or by a certain degree
of uniaxial orientation of the molecular arms as along the
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same director. The symmetric case �ii� could correspond es-
sentially to a strong uniaxial alignment of one of the molecu-
lar arms and to a weak �or even absent� alignment of the
other one around the same director.

Before considering the limiting case �=1, it is convenient
to analyze the � models. These are represented by the bound-
ary �23�. As already pointed out in the previous section,
G33=1⇒ �G11=G22�. Thus, when 0���1, the energy of
the one-parameter family of pair configurations defined by
G33=1 remains unchanged for any rotation of either interact-
ing particles around the common direction u3. This degen-
eracy entails that the ground state cannot be biaxial. The
stability analysis further shows that it is uniaxially stable
�76�. This amounts to saying that the named configurations
are stable under any small relative rotation tending to mis-
align the corresponding axes u3 and v3 so that the alignment
of these two molecular axes is restored. Moreover, the one-
parameter family of configurations corresponds to globally
minimizing orientations for � models in Eq. �19�, thus rep-
resenting the ground state. In other terms, � models mimic
the experimentally predominant situation where molecular
interactions tend to parallelize “long axes,” but produce no
appreciable correlations orthogonal to it and hence orthogo-
nal to the director.

Finally, for the PMM model ��=1 or, equivalently, �=1�,
in addition to the pair configurations G33=1, the pair con-
figurations defined by G22=1 are similarly degenerate with
respect to any rotation of the interacting molecules around
the common direction u2. Both uniaxial �pair and, hence,
ground-state� configurations are uniaxially stable, and the
ground state now possesses an additional discrete symmetry.
The completely aligned biaxial configuration �Eq. �20�� cor-
responds to the intersection of the two possible uniaxial
ground states, and remains unstable. PMM is a simultaneous
limiting case of both � and � models and its ground-state
degeneracies are, so to speak, inherited from both of them.
Correspondingly, the above described physical interpreta-
tions are to provide a common and consistent picture. In the
next sections we shall explore both classes of pair potentials,
including their common limiting case, by MF and, in some
cases, MC simulation.

IV. MEAN FIELD ASPECTS

The macroscopic phases which our lattice model can pre-
dict are classically labeled by four second-rank order param-
eters �Rpq

2 �, ensemble averages of the above symmetry-
adapted basis functions �Eqs. �5�–�7�� �95–97�. Here we use
the notation �sk����k=1,. . .,4 introduced in Eq. �7� and the en-
semble average will be computed within the MF approxima-
tion. The four named order parameters are connected with
the three second–rank ordering tensors defined by

Q j = �u j � u j −
1

3
I�, j = 1,2,3. �30�

All these tensors are symmetric and traceless by construction
and, moreover, they are not independent owing to the iden-
tity

�
j=1

3

Q j = 0 . �31�

In the absence of external fields, they share one and the same
eigenframe, say �ex ,ey ,ez�. Therefore, only four scalar pa-
rameters suffice to determine their eigenvalues. In MC simu-
lation studies this frame is not known a priori and can fluc-
tuate during simulation; instead in MF it is assumed to be
known and fixed. In both treatments the orientational order is
referred to this frame for allowing comparisons. Since only
two out of three tensors are independent, one can form the
three following pairs

�Q1,B1 = Q3 − Q2�, �Q2,B2 = Q1 − Q3� ,

�Q3,B3 = Q1 − Q2� . �32�

Then, one can select one of them and express all other quan-
tities in terms of it. Choosing, for instance, �Q3 ,B3� as ref-
erence pair, the following linear transformations hold:

Q2 = −
1

2
�B3 + Q3�, B2 =

1

2
�B3 − 3Q3� ,

Q1 = +
1

2
�B3 − Q3�, B1 =

1

2
�B3 + 3Q3� . �33�

In turn, the pair �Q3 ,B3� can be expressed in terms of the
four scalar order parameters ��sk��k=1,. . .,4 as follows:

Q3 = S1ez � ez −
1

3
I� + S2�ex � ex − ey � ey� , �34�

B3 = S3ez � ez −
1

3
I� + S4�ex � ex − ey � ey� , �35�

where S1= �s1� ,S2=�2
3 �s2� ,S3=�6�s3� ,S4=2�s4�, obey the

following constraints �see also Ref. �76��:

−
1

2
� S1 � 1, −

1

3
�1 − S1� � S2 �

1

3
�1 − S1� ,

− �1 − S1� � S3 � �1 − S1� , �36a�

−
1

3
min�2 + S1 + 3S2 + S3,2 + S1 − 3S2 + S3� � S4

�
1

3
min�2 + S1 − 3S2 + S3,2 + S1 + 3S2 − S3� . �36b�

From the above tensorial representation, it is apparent that
�s1� and �s2� represent uniaxial and biaxial ordering of the
molecular axis u3, respectively. The ordering of the other two
molecular axes u1 and u2 is globally represented by �s3� and
�s4�: the former characterizes the uniaxial one and the latter
the biaxial one. Similarly, the transformed tensors �Q1 ,B1�
and �Q2 ,B2� admit a representation similar to �Q3 ,B3� with
the corresponding four scalar components yielded by the lin-
ear relations �33�. Thus, the two transformed components
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pertaining to Q1 �Q2� describe the uniaxial and biaxial order-
ing of u1 �u2�, while the ones pertaining to B1�B2� describe
the global ordering of the other two molecular axes u2 ,u3
�u1 ,u3�.

Physically speaking, the three pairs of tensors provide a
different measure of orientational order. Actually, the single
tensor Q j provides a direct measure of the degree of align-
ment of the single molecular axis u j, and the difference be-
tween the three degrees of alignment is particularly relevant
in connection with a pair potential model 
 involving differ-
ent signs and different magnitudes of the coefficients
r1 ,r2 ,r3 in Eq. �3� �see remarks �i� to �v� in Sec. II�, and thus
both attractive and repulsive couplings. A natural procedure
for assigning the order parameters at a given temperature,
consists of finding first the largest eigenvalue of each of the
tensors Q j. Then the largest eigenvalue among the ones de-
termined in the first step is selected. The value so obtained,

say �̄, provides the actual new �s1� order parameter via �s1�
= 3

2 �̄. The first procedure is equivalent to a set of symmetry
transformations to be applied to the order parameters and it
corresponds to permutations of the eigenvectors �ex ,ey ,ez� of
both Q j ,B j simultaneously and for each j �76,79�. As a con-
sequence of these transformations the four order parameters
of each pair �Q j ,B j� can be appropriately recast to provide a
positive and maximum value of �s1�. The second procedure
results in a further discrimination among the eigenvalues of
the three pairs �Q j ,B j� which aims at selecting the pair
where Q j conveys the most calamitic molecular axis, that is
the largest value of �s1�. The overall methodology mimics
the one usually employed in MC simulations for detecting
uniaxial and biaxial phases �16,28,96�. In this section we
discuss the results obtained when the above approach is ap-
plied, within a MF treatment, to both � and � models.

After applying a MF procedure �see also references
quoted in the introduction� and starting from the order pa-
rameters defined in Eqs. �34� and �35�, the resulting expres-
sion for the free energy in the general case in Eq. �12� reads

AMF
* = 3�

j=1

4

�
k=1

4

djk�sj��sk� − T*ln��/�8�2�� ,

� = �
Eul

exp��W̃�d� , �37�

W̃ = 6�
j=1

4

�
k=1

4

djk�sj�sk���, � = 1/T*. �38�

Here �Eul denotes integration over Euler angles, i.e., for any
integrable function F���

�
Eul

F���d� � �
0

2�

d��
0

�

sin �d��
0

2�

F���d� , �39�

and asterisks mean scaling by �. The symmetric matrix D
with entries djk is defined by

�D� = �
− � 0 +

�6

2
� 0

0 − 2� 0 + �6�

+
�6

2
� 0 − 6� 0

0 + �6� 0 − 12�

� �40�

and its four eigenvalues �� j� can be written in a compact
way:

�3 = 2�1,

�4 = 2�2,

�1,2 = �1/2��R � �S� , �41�

where

R = − � − 6� ,

S = �� − 6��2 + 6�2. �42�

Within the domain of biaxial ground-state stability, repre-
sented by the constraints in Eq. �22�, it turns out that �2�0,
whereas �1�0 provided that �2�−4�. Accordingly, the fully
attractive or partly repulsive character of the underlying mi-
croscopic interaction is reflected by the spectrum of D and
the dispersion parametrization produces two zero eigenval-
ues. Moreover

�AMF
*

��sj�
= 6�

k=1

4

djk k, j = 1,2,3,4, �43�

 k = �sk� − �1/���
Eul

sk���exp��W̃�d�, k = 1,2,3,4,

�44�

so that the four consistency conditions  k=0 entail the extre-
mum equations

�AMF
*

��sj�
= 0, j = 1,2,3,4. �45�

The consistency equations are satisfied at all temperatures by
the set �sk�=0, entailing A

MF
* =0 �the isotropic solution�. At

sufficiently low temperature, other values of �sk� define ac-
ceptable solutions, producing A

MF
* �0.

Since the potential models under investigation �Eqs. �14�,
�18�, and �19��, represent partly repulsive pair interactions,
the corresponding MF free-energy A

MF
* fails to possess a glo-

bal minimum in the order parameter space in correspondence
of the solutions of the consistency equations. The search for
the stable phases has then to be conducted through a mini-
max principle, proposed and justified in Ref. �74� within the
MF approximation for biaxial nematics and originally put
forward by Bogolubov, Jr. in other contexts �98–100�. In
order to apply a minimax procedure we let E define the 4
�4 Hessian matrix whose entries Eij consist of the second
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derivatives of A
MF
* with respect to four parameters

��sk��k=1,. . .,4, calculated in the found solution�s� of the con-
sistency equations. In practice, the minimax procedure re-
quires first solving the consistency equations, usually, by a
bifurcation technique �101,102�. Next, at each examined
temperature, and for each found solution, one has to consider
the above Hessian matrix E, and check its eigenvalues: lo-
cally stable solutions are those where the above matrix pos-
sesses at most two negative eigenvalues and these are candi-
dates to stable phase�s�. Eventually, among them, the one
with the lowest free energy is selected so that a locally stable
solution may define the stable one over some temperature
range. Thus, when applied globally, the minimax procedure
yields, at a given temperature, the minimal value of A

MF
* over

the discrete set of solutions of the consistency equations. The
order parameters of the stable phases so obtained are then to
be recast according to the double-step recipe outlined above
in order to be compared with MC results.

As for the � models �Eq. �14�� the corresponding D ma-
trix is obtained by setting �=����, �=����, �=���� and
letting � range in �0,1�. As shown in the previous section,
these models turn out to be D4h symmetric. The correspond-
ing symmetry transformation ���

2 rotation around u1 and v1�
entails the following identity between the order tensors

Q2 = Q3, B2 = B3, �46�

meaning that the recipe illustrated above needs to be applied
only to �Q1 ,B1� and �Q3 ,B3�. By the MF treatment worked
out in Refs. �74,76�, the additional D4h invariance may also
entail that just two out of the four actual order parameters
suffice for the description of a condensed phase. Actually, it
is possible to show that the above D4h symmetry can result in
some constraints on the order parameters, i.e.,

�s3� = �s2� �47a�

�s1� = 2�s4� +�8

3
�s2� , �47b�

thus giving rise to a reduction of the free order parameters.
When applied a priori, this constrained analysis is equivalent
to a restricted MF �RMF� approximation. Solutions obeying
Eqs. �47� can correspond to biaxial phases involving all four
order parameters with �s2� and �s3� vanishing as T*→0 and
�s1�→1, �s4�→ 1

2 in the same limit �see bounds �36��.
A detailed unconstrained numerical bifurcation analysis

has been carried out here. From now on we shall be using the
terms restricted �or constrained� MF and unconstrained MF,
or simply MF.

Let us start from the isotropic state. According to the
minimax stability criterion, this state is a locally stable solu-
tion, and actually the stable phase, provided that

T* �!MF =
18

5
∀ � � �0,1� . �48�

At T*=!MF the isotropic state becomes unstable and a new
solution of the consistency equations bifurcates. Thus, an
ordered phase condenses in the lattice leading to a second-
order phase transition. The �unconstrained� MF treatment has

shown that when ���1�0.43, the order parameter profiles
of the established phase comply with Eqs. �47� and, accord-
ingly, the model supports a direct isotropic-to-biaxial phase
transition �see Figs. 2–5�. When �1���1, an intermediate
uniaxial stable phase bifurcates at T*=!MF from the isotro-
pic phase, and minimizes the unconstrained free-energy in
the range of temperatures !MF�T*�TA���, where TA���
decreases to zero as � tends to 1. On the other hand, at the
temperature !MF the above reduced solution �Eqs. �47��
keeps bifurcating and turns out to be the global minimizer
only for T*�TB����TA���, where TB��� also decreases to
zero as � goes to 1. In the interval �TB ,TA�, whose amplitude
tends to zero as � approaches to 1, a biaxial phase involving
all four order parameters is established, which differs from
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FIG. 2. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s1� of the � model
defined by �= 1

4 , obtained with different sample sizes. Circles:
l=10, squares: l=20, triangles: l=30. As pointed out in the text,
here and in the following figures, ! denotes the respective transi-
tion temperature, i.e., !MF for the MF and !MC for the MC results.
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FIG. 3. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s2� of the � model
defined by �= 1

4 , obtained with different sample sizes. Same mean-
ing of symbols as in Fig. 2.
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the one in Eqs. �47� and continuously connects the minimiz-
ers for T*�TA to those ones for T*�TB, thus bridging the
gap. In Figs. 6–9 the order parameters for �= 3

4 are repre-
sented by heavy solid curves and compared with MC simu-
lation results �see also the following section�. The points
�Ak ,Bk�k=1,. . .,4 in the plots mark the order parameters
��sk��k=1,. . .,4 at the temperatures TA, TB. It should be noticed
that the order parameters �s1�, �s2�, and �s3� exhibit a non-
monotonic dependence on T*: more precisely, �s1� increases
as temperature is decreased up to a relative maximum at
T*=TA, where it abruptly starts decreasing and then, at T*

=TB, it increases again up to the saturation value 1. As for
the remaining order parameters, �s2� and �s4� are predicted to
be zero �within numerical accuracy� in the range T*�TA,
then �s2� increases rapidly, attains a maximum value at T*

=TB and tends to zero as T*→0. �s4� keeps increasing start-

ing from zero at T*=TA and up to its maximum value 1
2 . The

order parameter �s3� starts increasing at the takeover of the
ordered phase, i.e., T*=!MF, then it approaches a local
maximum and at T*=TA, when already decreasing, it starts
increasing again up to a second local maximum at T*=TB
and, eventually, decreases to zero as T*→0. In the same
figures the reduced order parameters �Eqs. �47�� are plotted
as light solid curves which turn out to be superimposed to the
heavy ones for T*�TB. To summarize, the �unconstrained�
MF analysis predicts first a uniaxial-to-biaxial transition, and
then another transition involving biaxial phases; they are
continuous and marked by abrupt changes of slope at TA and
TB, respectively. Thus, our analysis, and comparisons with
MC results to be mentioned later, show that the above reduc-
tion holds over some range of � values, that is at all tem-
peratures when ���1, and for the biaxial phase stable at the
lowest temperatures, that is, T*�TB���, when ���1.

The above profile structure is typical in the range �1
���1 and yields the global MF phase diagram plotted in
Fig. 10 together with MC estimates of transition tempera-
tures for a few selected � values; numerical values of the
transition temperatures are collected and compared in Table I
as well; comparison between MF and MC predictions for the
order parameters will take place in the following. At this
stage, on the basis of MF results only, we could attempt a
physical interpretation of the above temperature dependence
of the order parameters. As remarked in the previous section,
the model parameter � is a measure of the strength of repul-
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FIG. 4. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s3� of the � model
defined by �= 1

4 , obtained with different sample sizes. Same mean-
ing of symbols as in Fig. 2.
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FIG. 5. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s4� of the � model
defined by �= 1

4 , obtained with different sample sizes. Same mean-
ing of symbols as in Fig. 2.
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FIG. 6. MF predictions and simulation results for the order pa-
rameter �s1� of the � model defined by �= 3

4 . The heavy solid
continuous curve marks results obtained by means of an uncon-
strained MF approximation, involving four order parameters. The
light solid line marks the MF results obtained when the reduction of
order parameters is applied �RMF treatment, see also text�. The
points A1 and B1 mark the order parameters at TA� 3

4 � and TB� 3
4 �,

respectively, where the unconstrained analysis predicts additional
transitions with abrupt changes of slope. For T*�TB, heavy and
light curve overlap. Discrete symbols represent simulation results
for the same model, obtained with different sample sizes. Same
meaning of symbols as in Fig. 2. Points M1 and N1 mark MC results
discussed in the text.
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sion between two corresponding molecular axes �see Eq.
�14��. Notice that, according to the order parameter recon-
struction presented above, the choice of the pair of mutually
repelling molecular axes �Eq. �14� or �15�� does not affect
the resulting order parameter profiles. As far as � is not too
big ����1�, the repulsion is not sufficient to prevent the
biaxial phase from forming directly from the isotropic phase:

all three molecular axes are sufficiently correlated and
aligned to let the biaxial phase condense in the lattice. As �
is increased �1����1�, the stronger repulsion brings dis-
order in the lattice at high temperatures and, by cooling
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FIG. 7. MF predictions and simulation results for the order pa-
rameter �s2� of the � model defined by �= �3 /4�. As in Fig. 6, the
heavy solid continuous curve marks the result obtained by means of
an unconstrained MF treatment, involving four order parameters.
The light solid line marks the MF result when the reduction of order
parameters is applied �RMF treatment, see also text�. The points A2

and B2 mark the order parameters at TA� 3
4 � and TB� 3

4 �, respectively,
where additional transitions take place with abrupt changes of
slope. For T*�TB heavy and light curves overlap. The uncon-
strained MF treatment predicts �s2�= �s4�=0 for T*�TA, i.e., a
uniaxial phase �see also Fig. 9�. Discrete symbols represent simu-
lation results for the same model, obtained with different sample
sizes. Same meaning of symbols as in Fig. 2. The points M2 and N2

mark MC results discussed in the text.
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FIG. 8. MF predictions and simulation results for the order pa-
rameter �s3� of the � model defined by �= �3 /4�. The meaning of
symbols corresponds to the two previous Figs. 6 and 7.
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FIG. 9. MF predictions and simulation results for the order pa-
rameter �s4� of the � model defined by �= �3 /4�. The meaning of
symbols corresponds to the three previous Figs. 6–8. Notice also
that the unconstrained MF treatment predicts �s2�= �s4�=0 for T*

�TA, i.e., a uniaxial phase �see also Fig. 7�.
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FIG. 10. MF phase diagram for the � potential models �Eq.
�14��. The ordering transitions are second order, and the lowest-
temperature phase involved is predicted to be biaxial for 0���1,
and uniaxial when �=1 �PMM model; see also text�. Discrete sym-
bols �triangles� represent MC simulation results for transition tem-
peratures, and the straight dotted line was obtained by least-square
fit. The light dashed line marks the temperature TA��� joining the
line T*=!MF= 18

5 at �=�1�0.43. According to the MF predictions,
in the range TA����T*�!MF an intermediate uniaxial phase takes
place and the uniaxial-to-biaxial transition is second order. The cor-
responding MC simulation results obtained with �=3 /4 suggest a
weakened biaxial phase �see also text�. The curve TB���, marking
biaxial-to-biaxial transitions �see also text�, nearly coincides with
TA��� to the resolution of the figure. Numerical results are collected
in Table I.
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down from the isotropic phase, the first phase which forms is
a uniaxial one, where both order parameters �s1� and �s3� are
nonzero. By a further decrease in temperature, a transition to
the biaxial régime is expected to take place at T*=TA, and
the phase is correctly described by the above RMF solution
at even lower temperatures T*�TB. The transition shows a
recognizable decrease of �s1�, which can be seen as reflecting
the above competition mechanism �see Sec. III before Eq.
�27��; moreover, by the relevant definitions �Eqs. �6� and
�7��, a decrease of �s1� tends to produce an increase of �s3�
via its �-depending term; in other words, if the cone de-
scribed by a molecular axis, say u3, around ez widens, the
alignment of the other two �described by �s3�� around the
same director ez increases. Actually, the order parameter �s3�
may also increase owing to the biaxial environment.

Before discussing the results obtained at �=1, it is con-
venient to illustrate the predictions for the second class of
potential models under investigation �Eq. �19��. For these
latter models the D matrix is specialized by setting �=−1,
�=0, and letting � range in �0,1�. For �=0, the well-known
Maier-Saupe or LL model is recovered in our setting. The

model supports a first-order transition between isotropic and
uniaxial nematic phase taking place at !MF�1.3212; this
model was also extensively studied by a number of other
techniques, including simulation �18,103–107�, whose esti-
mate for the transition temperature is !MC
=1.1232�0.0001. When ��0, the partly repulsive nature of
the interaction �see Sec. III after Eq. �25�� requires us to
enforce a minimax strategy. For this class of interaction mod-
els, there are no internal symmetries leading to an a priori
reduction of the order parameter space. Therefore the bifur-
cation analysis has to be performed in the whole space of
order parameters. On the other hand, as shown in the previ-
ous section, the ground state suggests the absence of biaxial
order at all temperatures and the following analysis will con-
firm the expectation, thus showing a posteriori that one can
legitimately work out a mean-field treatment based on the
uniaxial order parameters only.

Let us now summarize the results of the above MF analy-
sis in terms of its locally stable solutions. Their number is
always 2 for 0���1. For 0���1 the isotropic phase is
locally stable at temperatures above its supercooling limit
T

c
*���, defined by

T* � T
c
* = T

c
*��� =

3 + 9�2 + 3�1 + 3�2

5�1 + 3�2
, �49�

notice that T
c
*��=0�= 6

5 , as already known for the Maier-
Saupe model. As for the orientationally ordered phase, nu-
merical bifurcation analysis shows that for 0���1 the only
locally stable solutions of the four consistency equations,
entail �s2�=0= �s4� and the only nonvanishing order param-
eters are the uniaxial ones, i.e., �s1� and �s3�, as previously
disclosed on the basis of ground-state considerations. The
consistency equations for the uniaxial phase reduce to

�s1� =

�
0

�

exp�3��2�s1� + �6�s3���s1�"��I09

2
�s1��� sin2"�s1�"�sin "d"

�
0

�

exp�3��2�s1� + �6�s3���s1�"��I09

2
�s1��� sin2"�sin "d"

, �50�

�s3� =

�6�
0

�

exp�3��2�s1� + �6�s3���s1�"��I19

2
�s1��� sin2"�sin3"d"

4�
0

�

exp�3��2�s1� + �6�s3���s1�"��I09

2
�s1��� sin2"�sin "d"

�51�

where I0 and I1 are modified Bessel functions of the first kind
and indices 0 and 1, respectively. These equations corre-
spond to the ones for a uniaxial phase consisting of
D2h-symmetric molecules given in Ref. �5�, where the au-
thors studied the geometric mean approximation model, i.e.,
�=−1, 4�=−�2 in our setting.

In order to illustrate the typical scenario arising from
these models, we choose �= 1

4 , also for a comparison with
MC simulation studies reported in the following. For this
selected value, the supercooling limit of the isotropic phase
can be read from Eq. �49� as T

c
*��= 1

4 �= 12�19+57
20�19

�1.2538.
For T*�!MF�1.3468 the isotropic phase is accompanied

TABLE I. MF and MC estimates for transition temperatures,
obtained for potential models defined by different values of � in Eq.
�14�.

� !MF !MC TA TB

0�78� 18/5 2.51�0.01

1/4 18/5 2.43�0.01

1/2 18/5 2.35�0.01 2.6285 2.6279

3/4 18/5 2.24�0.01 1.0948 1.0543

1 �PMM� 18/5 2.15�0.01
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by another locally stable solution, globally minimizing the
free-energy A

MF
* according to the minimax criterion, and ac-

tually defining the stable phase. This is a positive-ordered
uniaxial phase with �s1� saturating at the upper bound 1 and,
accordingly, �s3� at 0 �see bounds in Eqs. �36��. Thus, a first-
order transition occurs from the isotropic phase, which estab-
lishes a uniaxial phase with both the order parameters �s1�
and �s3�, characterizing a general uniaxial phase produced by
biaxial molecules.

Numerical continuation in � shows that the solution
found for �= 1

4 stays qualitatively unchanged for 0���1
and yields the global phase diagram in Fig. 11. In this figure
we represent the transition line �solid heavy line� that marks
all first-order transitions from the isotropic to the uniaxial
phase, i.e., the temperature !MF as a function of �. The thin
dashed-dotted line represents the supercooling temperature
T

c
*�!MF as a function of �. This latter curve meets the

transition line at �=1, meaning that there the transition

changes from first to second order. Thus, MF predicts that,
upon increasing �, the transition temperature increases,
whereas its first-order character weakens, again in rough
agreement with MC results. In Table II both MF and MC
predictions for the transition temperatures are reported for a
few selected values of �. Finally, for �=1, the scenario
changes in two ways: on the one hand, !MF��=1�
=T

c
*��=1�, i.e., the transition between isotropic and uniaxial

nematic phases turns second order. On the other hand, the
above MF treatment also returns a biaxial solution, now lo-
cally unstable at all temperatures. Recall that this case can
also be regarded as the limit of the � models as �→1, where
the two above temperatures TA and TB vanish. In other
words, in terms of � models, the additional D4h invariance at
�=1, causes the order of transition to change from first to
second, whereas the condensed phase remains unchanged,
and its uniaxial character is a signature of the ground state.
Strictly speaking, PMM represents for the � models an
isolated tricritical point on the isotropic-to-uniaxial tran-
sition line. Accordingly, as � tends to 1 the quantity

p=
�!MF���−Tc*����

!MF��� , the so-called precocity �108�, goes to zero
as a consequence of the molecular biaxiality.

In the next section a MC simulation study will be pre-
sented for both � and � models, and a comparison with the
above MF predictions will take place.

V. SIMULATION ASPECTS

The potential models defined by �= �1 /4� , �1 /2� , �3 /4�,
�= �1 /4� , �1 /2� , �3 /4�, and �=�=1 were studied by MC
simulation as well. Calculations were carried out on a peri-
odically repeated cubic sample, consisting of N= l3 particles,
l=10,20,30, and were run in cascade, in order of increasing
temperature. Each cycle �or sweep� consisted of 2N MC
steps, including a sublattice sweep �109�. The finest tempera-
ture steps used were #T*=0.005, and even #T*=0.0025, in
the transition regions �see below�.

Equilibration runs took between 250 00 and 200 000
cycles, and production runs took between 250 000 and
1 250 000. Macrostep averages for evaluating statistical er-
rors were taken over 1000 cycles. Calculated thermodynamic
quantities include mean potential energy per site U* and con-
figurational specific heat per particle C*, where the asterisks
mean scaling by � and kB, respectively. Simulation estimates
of the order parameters �Rpq

2 � �95–97� were calculated by
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FIG. 11. MF Phase diagram for the �-potential models �Eq.
�19��. The thick solid line marks first-order transitions from isotro-
pic to uniaxial phase. The thin dashed-dotted line represents the
bifurcation points from the isotropic state �supercooling limit
T

c
*���, see Eq. �49��. Both lines meet at the PMM model where the

transition becomes second order �isolated tricritical point, see text�,
and is marked by a circle. Accordingly, the precocity p �see text�
tends to zero as � tends to 1. Discrete symbols �triangles� represent
MC simulation results for transition temperatures. The dotted line,
obtained by least-square fit, corresponds to a very flat parabola �see
also text�. Numerical results are collected in Table II.

TABLE II. MF estimates for transitional properties, obtained for potential models defined by different
values of � in Eq. �19�, and MC estimates for the corresponding transition temperatures; at �=1 the transition
becomes second order.

� !MF �s1� �s3� #U
MF
* �P4� !MC

0�103–107� 1.3212 0.4292 0.5521 0.1200 1.1232�0.0001

1/4 1.3468 0.3818 0.0256 0.4553 0.0955 1.120�0.005

1/2 1.4335 0.2448 0.0414 0.2171 0.0405 1.105�0.005

3/4 1.5912 0.0942 0.0282 0.0412 0.0064 1.085�0.005

1 �PMM� 18/10 1.075�0.005
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analyzing a configuration every cycle, using methodologies
discussed in detail by other authors �16,28,96�. We also
evaluated the so-called short-range order parameters �95,96�

$L,j = �PL�u j · v j��, L = 2,4, j = 1,2,3, �52�

measuring correlations between corresponding pairs of unit
vectors associated with nearest-neighbor molecules. It fol-
lows from Eq. �12� that the potential energy U* is a linear
combination of the quantities $2,j. Moreover, for � models,
the D4h symmetry of Eq. �14� entails $L,3=$L,2. Actually,
simulation results obtained for ��1 were found to produce
results satisfying this condition within associated statistical
errors; on the other hand, preliminary simulations carried out
for �=1 yielded $L,3�$L,2, in the orientationally ordered
region at low temperatures. This we interpreted as a reflec-
tion of the above ground-state degeneracy, as well as of the
fact that, at low temperatures, interconversion between the
two ground-state configurations �or, in general, between or-
dered configurations rather close to them� has to overcome a
significant energy barrier, and becomes too slow with respect
to the named MC procedure. Therefore, in the case �=1, at
the end of each macrostep, we carried out a rotation of each
particle by � /2 around its u1 axis. Simulation results ob-
tained in this way for $L,j were found to satisfy the above
symmetry condition within associated statistical errors.

This collective rotation can �but need not� be used for �
�1 as well: additional tests showed that, in these cases, cal-
culations carried out both with and without implementing the
named procedure yielded consistent results for the observ-
ables of interest, i.e., in agreement within associated statisti-
cal uncertainties. Simulations of the � models were actually
performed using the equivalent but computationally more
convenient representation of the potential �Eq. �15��, where
the collective rotation is simply realized by changing each
Euler angle ��. The appropriate permutations were then car-
ried out. On the other hand, the choice in Eq. �14� appears to
make comparisons with other potential models less cumber-
some.

Before leaving this section, let us also notice that, in spite
of the rather heavy computational cost, the investigated
sample sizes are not very large �values l�40 have been used
in other simulation studies, e.g., Refs. �16,17��. Although a
consistent qualitative picture seems to emerge �see results
below�, the quantitative accuracy of simulation results
should be taken with caution or, better, left for further inves-
tigation in a future study, as happened with other similar
cases in the literature.

VI. RESULTS AND COMPARISONS

We present here a selection of simulation results, and
make appropriate comparison with the corresponding MF
predictions. MF phase diagrams have been presented in Figs.
10 and 11, and transition temperatures are collected in Tables
I and II, respectively.

Results for the mean potential energy U* �mostly not
shown� suggested a gradual and monotonic evolution with
temperature, and their sample size dependency usually ap-
peared to saturate between l=20 and l=30. The individual

short-range order parameters �not shown� $L,j were found to
behave in a similar way.

Simulation results for C* were affected by statistical er-
rors ranging between 1 and 5 %, not shown in the appropri-
ate figures. For other reported observables, statistical errors
fell within symbol sizes. In all investigated cases, the con-
figurational specific heat C* was found to be essentially in-
dependent of sample size, with the exception of a certain
temperature range where it exhibited a peak, recognizably
sharpening with increasing sample size. Simulation results
for order parameters were also found to exhibit a pronounced
decrease with increasing l, in and above the named tempera-
ture range. Thus the transition temperature !MC was esti-
mated on the largest sample, by combining the two named
pieces of information; its uncertainty was conservatively
taken to be twice the temperature step used in the transition
region; comparison between MF and MC predictions for or-
der parameters has been realized in various figures by plot-
ting them versus T* /!, i.e., scaling temperatures by the re-
spective transition values.

Case �= �1 /4�. The configurational specific heat C* is
shown in Fig. 12. Upon comparison with the corresponding
results obtained for other values of �, the height of the peak,
as defined by the largest sample size, was found to decrease
with increasing � �see Fig. 13�.

MF predicts in this case a direct isotropic-to-biaxial tran-
sition, and, in the ordered phase, relationships in Eqs. �47�
hold. Simulation results confirm the direct transition and
show that, in the ordered phase, the named relationships are
better satisfied in the low-temperature régime. The overall
agreement with MF results remained satisfactory even at
high temperatures �Figs. 2–5�.

Actually, for �= �1 /4� , �1 /2�, both �s1� and �s4� were
found to decrease monotonically with temperature �Figs. 2
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FIG. 12. Simulation results for the configurational specific heat
of the � model defined by �= 1

4 , obtained with different sample
sizes. Same meaning of symbols as in Fig. 2. The plot exhibits a
peak at T*�2.4, growing higher and sharper as sample size in-
creases. On the other hand, simulation results for order parameters
show a pronounced decrease with increasing sample size at and
above this temperature �see Figs. 2–5�; these two aspects are used to
locate the transition temperature.
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and 5�. On the other hand, �s2� and �s3� showed a simple
maximum taking place at T* /!�3 /4 �Figs. 3 and 4�. More-
over, both MF and simulation results �figures not reported
here� indicate that, at a given temperature in the ordered
phase, the two order parameters �s1� and �s4� decrease upon
increasing � from 1 /4 to 1 /2.

Case �= �1 /2�. Simulation results obtained for �= �1 /2�
were found to be rather similar to their �= �1 /4� counter-
parts. Notice that, for �= �1 /4�, MF predicts a direct transi-
tion between a low-temperature biaxial phase, where only
two order parameters are independent �see Eqs. �47��, and
the isotropic one. On the other hand, for �= �1 /2� MF pre-
dicts an intermediate uniaxial phase in the range !MF�T*

�TA, as well as a very narrow temperature range TB�T*

�TA, where the phase is biaxial and all four order param-
eters do not comply with Eqs. �47�.

Case �= �3 /4�. MF and simulation results for the order
parameters obtained with �= �3 /4� exhibited another, more
complex scenario: all the four order parameters showed a
monotonic dependence on temperature for T*�0.875 and
then T*�1.75, but pronounced maxima and minima in be-
tween �points �Mk ,Nk�k=1,. . .,4 in Figs. 6–9�, together with a
recognizable sample-size dependency. More precisely, upon
increasing temperature from 0, �s1�, �s2�, �s3� were found to
evolve in a monotonic way up to a point Nk �k=1,2 ,3�,
where their temperature profile changed from increasing to
decreasing �or vice versa�, and remained monotonic up to a
point Mk. �s1� became again monotonically decreasing at
higher temperatures, whereas both �s2� and �s3� exhibited an
additional maximum beyond M2 and M3, respectively. Notice
also that, in Fig. 9, N4 marks a change of slope, whereas M4
is associated with a minimum. The pairs of points �Nk ,Mk�
correspond to the pairs �Bk ,Ak� obtained by the above MF
treatment, exhibiting abrupt changes of slopes associated
with second-order transitions.

A simple interpretation can be put forward: as � increases
towards 1, biaxial order tends to be disturbed and reduced,

and the uniaxial one to be favored �see the remark in the
stability section�. This effect is somehow strengthened and
anticipated by MF, whereas MC suggests that even larger
values of � would be needed to fully stabilize a uniaxial
phase, and point to the survival of a weakened biaxial phase
up to the disordering transition. Notice also that MF predicts
a constant value for the disordering transition temperature
for 0���1, whereas simulation results show its linear de-
cay with �, and a slope �−0.36.

Cases �= �1 /4� , �1 /2� , �3 /4�. Results obtained for the
three named values of the � parameter were qualitatively
rather similar, so that only some results for �= 1

4 will be
discussed. The configurational specific heat C* was again
found to be independent of sample size with the exception of
the transition range, where the height of its peak kept in-
creasing with increasing sample size. Over the same tem-
perature range, U* exhibited a more explicit sample-size de-
pendency �Figs. 14 and 15�. The peak of the specific heat
was again found to exhibit a recognizable decrease with in-
creasing � �Fig. 16�.

Simulation results for the order parameter �s1� �Fig. 17�
exhibited a monotonic decay with temperature, and again a
more pronounced sample-size dependency in the transition
range. Simulation results for �s3� �Fig. 18� were found to
increase with increasing temperature up to a peak near the
transition temperature. Simulation results for �s2� and �s4�
�not shown� remained smaller than 0.03, and kept decreasing
with increasing sample size. �s2� was found to peak around
the transition, whereas �s4� kept decreasing with increasing
temperature. These results point to the vanishing of the
named quantities in the thermodynamic limit. For 0���1
MF predicts a first-order transition, whose transition tem-
perature increases, and whose first-order character decreases
with increasing �, thus becoming weaker and weaker in
comparison with LL �for which an accurate characterization
by simulation is a computationally demanding task
�103–107��. The present simulation results are broadly com-
patible with a weak first-order transition, with transition
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FIG. 13. Simulation results for specific heats of the � models,
obtained with the largest investigated sample size �l=30�. Asterisks:
�=1 /4, diamonds: �=1 /2, stars: �=3 /4, hexagrams: �=1. The
maxima fall between T*=2 and T*=2.5, and help locating transi-
tions to the isotropic phases �see., e.g., Figs. 6–9�.
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FIG. 14. Simulation results for the potential energy of the �
model defined by �= 1

4 , in the transition region, and obtained with
different sample sizes. Same meaning of symbols as in Fig. 2.
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jumps slowly developing with increasing sample size, but
they do not completely exclude a second-order behavior.

On the other hand �see Fig. 11 and Table II�, MF predicts
a pronounced increase of the transition temperature upon in-
creasing � from 0 to 1 �by some 30%�, whereas simulation
results point to its far weaker decrease �by �5%�. In this
case a least-square fit to a straight line was not satisfactory; a
parabolic least-square fit was performed and the resulting
curve was found to possess equation !MC,fit���
=−0.02658�2−0.02412�+1.1232.

Case �=�=1. The configurational specific heat C* �Fig.
19� was again found to be independent of sample size with
the exception of the transition range, where the height of its
peak kept increasing with increasing sample size. Simulation
results for the order parameter �s1� �Fig. 20� exhibited a
monotonic decay with temperature, and again a more pro-
nounced sample-size dependency in the transition range.

Simulation results for �s3� �Fig. 21� were found to increase
with increasing temperature up to a peak taking place at
T* /!�0.8, i.e., recognizably below the transition tempera-
ture. Simulation results for �s2� and �s4� �Figs. 22 and 23�
remained smaller than 0.1, and exhibited a pronounced de-
crease with increasing sample size. They both peaked ap-
proximately at the same temperature as �s3�. These results
again suggest to the vanishing of the named quantities in the
thermodynamic limit.

Thus, on the whole, comparisons show a rough qualitative
agreement between MF and simulation results. On the one
hand, MF predictions involving the type of orientational or-
der �whether uniaxial or biaxial� in the low-temperature
phase do agree with simulation results. Predictions of direct
second-order transitions between biaxial and isotropic phases
�for the � models, 0���1� also appear to be supported by
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FIG. 15. Simulation results for the configurational specific heat
of the � model defined by �= 1

4 , obtained with different sample
sizes. Same meaning of discrete symbols as in Fig. 2.
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FIG. 16. Simulation results for specific heats of the � models,
obtained with the largest investigated sample size �l=30�. Asterisks:
�=1 /4, Diamonds: �=1 /2, Stars: �=3 /4, Hexagrams: �=1.
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FIG. 17. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s1� of the � model
defined by �= 1

4 , obtained with different sample sizes. Same mean-
ing of symbols as in Fig. 2.
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FIG. 18. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s3� of the � model
defined by �= 1

4 , obtained with different sample sizes. Same mean-
ing of symbols as in Fig. 2.
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simulation, and similarly happens for the case �=�=1,
where a second-order transition to a uniaxial phase is pre-
dicted. On the other hand, the MF prediction of an interme-
diate uniaxial phase for a certain range of � values is not
confirmed by the present simulations, even though the tem-
perature profiles of order parameters are in good qualitative
agreement �Figs. 6–9�. Moreover, as pointed out above, Figs.
10 and 11 show that MF predictions concerning � or � de-
pendencies of transition temperatures disagree with simula-
tion. It may be appropriate to recall that comparisons be-
tween MF predictions and MC results for the phase diagram
of the above “dispersion” model on a three-dimensional lat-
tice �16,17� showed a better qualitative agreement.

VII. CONCLUSIONS

To summarize, the investigated pair potentials depend on
three parameters, whose ranges can be first significantly re-

duced by means of available geometric identities �77�. Some
specific parameter ranges, discussed here, entail a stable bi-
axial pair �and hence overall� ground state, and the corre-
sponding models �� models� produce biaxial nematic behav-
ior at low temperature. They can support a direct second-
order transition between biaxial and isotropic phases, even
though the interaction contains repulsive components. Both
MF and MC treatments have shown that in case of strong
repulsion the biaxial phase is weakened in the high-
temperature regime and, according to MF, it can be even
replaced by an intermediate uniaxial phase.

On the other hand, we have also considered parameter
values producing uniaxial ground states �� models� in order,
so to speak, to substantiate and to revisit the common remark
about mesogenic molecules usually being biaxial but also
usually producing uniaxial nematic phases. The correspond-
ing pair potential models predict both first- and second-order
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FIG. 19. Simulation results for the configurational specific heat
of the PMM model, obtained with different sample sizes. Same
meaning of symbols as in Fig. 2.
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FIG. 20. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s1� of the PMM
model, obtained with different sample sizes. Same meaning of sym-
bols as in Fig. 2.
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FIG. 21. MF predictions �continuous curve� and simulation re-
sults �discrete symbols� for the order parameter �s3� of the PMM
model, obtained with different sample sizes. Same meaning of dis-
crete symbols as in Fig. 2.
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FIG. 22. Simulation results �discrete symbols� for the order pa-
rameter �s2� of the PMM model, obtained with different sample
sizes. Same meaning of symbols as in Fig. 2. In this case the cor-
responding MF prediction is zero.
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transitions between uniaxial and isotropic phases. In particu-
lar, the second-order transition occurs for the PMM case,
which can be regarded as common limiting case for the two
families of potential models.

Notice that, in experimental terms, the uniaxial nematic-
isotropic transition is usually first order, but some rare ex-
ample showing evidence of tricritical behavior in a nearly

second-order case has been reported in Ref. �110� where a
cyclic liquid crystalline trimer has been employed.

Since the investigated potential model has proven to be
rather versatile, it also seems natural to consider other con-
ditions under which biaxial behavior is completely removed
from the resulting phase diagram. Actually, in the model pa-
rameter space, away from the named biaxial stability region,
ground state configurations other than biaxial ones become
allowed, and other potential models �even fully repulsive�
deserve closer study, possibly giving rise to unexpected or-
dered phases. Investigations along these lines are currently
under way, and will be reported in due course.
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Diele, G. Pelzl, and U. Bakowsky, Mol. Cryst. Liq. Cryst. 198,
393 �1991�.

�52� S. Chandrasekhar, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect.
A 243, 1 �1994�.

�53� S. Chandrasekhar, G. G. Nair, D. S. Shankar Rao, S. Krishna
Prasad, K. Praefcke, and D. Blunk, Curr. Sci. 75, 1042 �1998�.

�54� S. M. Fan, I. D. Fletcher, B. Gündoḡan, N. J. Heaton, G.
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